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Laboratory measurements on the instability of axisymmetric capillary surfaces 
pinned to the corners of annular grooves of rectangular section rotating a t  constant 
angular velocity 52 have been conducted. In stable configurations the fluid contact 
lines remain pinned to the corners of the groove with contact angles relative to 
the inner and outer vertical walls. Using water as the test fluid in narrow grooves of 
nearly constant width, the critical frequency 52, for instability generally decreases 
with increasing overfill volume AV and mean groove radius. Numerical integration 
of the describing equation gives the shape of the rotating meniscus as a function of 
five independent parameters. I n  the range of contact angles el,* < x ,  a comparison 
of experimental results with numerically computed meniscus profiles suggests three 
mechanisms for contact line movement based on the effective static advancing (8,) 
and receding (8,) contact angles for liquid pinned to a sharp corner. Measurements 
of critical frequencies over a wide range of overfill volumes in six different grooves 
are in favourable agreement with composite regime diagrams for the critical static 
meniscus configuration. An interesting feature of this system is the existence of a 
range of overfill volumes inaccessible to experiments conducted by fixing the overfill 
volume on a stationary disk and subsequently elevating the disk rotation until 
contact line movement is observed. Numerical studies showing the effects of Bond 
number, groove curvature and contact angle hysteresis are presented. 

1. Introduction 
In this investigation we consider an annular liquid-filled groove formed in the 

surface of an otherwise horizontal plate executing rigid rotation about the vertical 
axis of symmetry. The liquid is pinned to the inner and outer corners of the groove 
and the system is subjected to a uniform gravitational field aligned with the axis of 
rotation. In  question is the shape of the meniscus formed by overfilling the groove 
and the condition for motion of its contact lines. Meniscus shapes are found by 
numerical integration of a modified form of the equation of Young and Laplace 
which takes into account both gravitational and centripetal force fields. Stability is 
explored experimentally and evidence suggests that for contact angles less than in, 
approximately, contact line movement is controlled solely by the intrinsic advancing 
and receding contact angles of the system. The problem of contact line movement, 
therefore, is reduced to the problem of calculating the shapes of pinned annular 
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capillary surfaces in solid-body rotation about their axis of symmetry. It will be seen 
that even this simple problem gives rise to interesting regime diagrams for incipient 
contact line movement, owing to the presence of the corners to which the menisci are 
pinned and also to contact angle hysteresis. No stability analysis of this problem has 
been attempted. Indeed, one must be careful to distinguish between the existence 
and the stability of a solution for a rigidly rotating liquid ring. The theoretical 
aspects of the problem presented here only relate to annular menisci in their ‘ critical 
static configuration’ (cf. Dusaan V. 1985), referring to the condition of incipient 
contact line movement. 

Surprisingly, a review of the literature starting with Finn’s (1986) monograph on 
equilibrium capillary surfaces does not reveal any work on the shape of pinned, 
rotating axisymmetric menisci formed in finite annular domains subjected to a 
uniform gravitational field. A considerable number of investigations have dealt with 
the shape and stability of stationary circular (closed) menisci in a uniform 
gravitational field; for these the reader is referred to Padday & Pitt (1973), Michael 
& Williams (1977), Finn (1986) and references cited therein. Somewhat akin to the 
present problem is the study by Goodwin, Rice & Middleman (1988) on the shape and 
motion of isolated liquid drops in contact with a horizontal rotating plate. Both this 
latter study and the present investigation are concerned with the balance of surface 
tension, gravitational and centripetal forces. 

Experiments and analysis of wave motion on the surface of liquid-filled channels 
with pinned edge conditions have been reported by Scott & Benjamin (1978) and 
Benjamin & Scott (1979) for straight (two-dimensional) channels and by Heckerman 
et al. (1979) for axisymmetric (three-dimensional) channels. These systems are novel in 
that the fixed edge conditions impart an additional hydrodynamic cross-channel 
loading which significantly augments the phase speed of linear progressive waves in 
narrow channels. While these and additional studies by Benjamin (1980), Benjamin 
& Graham-Eagle (1985) and Weidman & Norris (1987) all represent analyses of wave 
motion on pinned static menisci, none have dealt with the problem of contact line 
stability. 

Analyses of contact line stability for two-dimensional static menisci have been 
reported by Michael & Williams (1977) using a thermostatic approach and Davis 
( 1980) using small-disturbance hydrodynamic theory. In both investigations various 
boundary conditions related to different material systems were considered. To 
formulate a tractable problem, Davis (1980) considered the limit of zero Bond 
number where cross-sectional meniscus profiles take the form of circular arcs 
intersecting a smooth horizontal plane. For fixed contact lines he found that all 
wavenumbers are stable for contact angles a < $ 7 ~  and that wavenumbers greater 
than id3 are stable for contact angles a < 7 ~ .  Michael & Williams (1977) found that 
circular sessile drops are stable to axisymmetric disturbances and to the first 
asymmetric mode for all a < R .  Thus both straight static rivulets of the type 
considered by Davis (1980) and closed sessile drops are unconditionally stable for all 
a <arc. Although the present experiments fall into the range a < an, nothing 
definitive can be inferred about the stability of the rotating menisci owing to 
differences in meniscus geometry and the absence of Coriolis forces in the above-cited 
stability analyses. Furthermore, the above investigations consider liquid wetting a 
flat horizontal surface whereas the present experiments have been performed for 
liquid pinned to and overfilling a channel of rectangular section. Also, the results of 
Davis (1980) do not apply because his models are founded on linear contact angle 



The shape and stability of pinned rotating annular menisci 27 

Groove volume V,  

Overfill volume A V  

FIGURE 1. Cross-section of circular disk with liquid-filled annular groove. 

behaviour, different from the nonlinear condition of contact angle hysteresis of 
interest in this study. 

Formulation of the problem, numerical solution for meniscus profiles and necessary 
and sufficient conditions for stationary contact lines are presented in $2. The 
experimental set-up for the measurement of contact line movement described in $3 
is followed by a presentation of results in $4. Numerical parameter studies are given 
in $5 and the paper concludes with a discussion and closing remarks in $6. 

2. Problem formulation and numerical solution 
A schematic diagram showing a meniscus profile formed by overfilling an annular 

groove of rectangular section is presented in figure 1. We assume axisymmetric 
motion and employ cylindrical coordinates ( r * ,z* )  for which k is the unit vector 
along the vertical z*-axis. The inner and outer walls of the channel have radii R, and 
R,, respectively, and the groove has depth D sufficiently large that a deformed 
capillary surface never intersects the bottom of the channel. The fluid is subjected to 
a uniform gravitational field - g k  and the plate rotates a t  constant angular velocity 
&Qk. The meridional profile of the axisymmetric meniscus is defined by the 
equation 

where 7: is chosen such that [*(R,) = C*(R2) = 0, thus ensuring that the liquid is 
pinned to the corners of the groove. The local curvature a t  the free surface is then 

( 1 )  F(r*, z*)  = z* - C*(r*) = z* - [q*(r*) - 7 3  = 0, 

The pressure drop across the meniscus is described by the equation of Young and 
Laplace : 

(3) PC(T*)---P, = -ITK(r*), 

where p ,  and p g  are the liquid and gas pressures adjacent t o  the free surface, 
respectively. Both p ,  and the surface tension coefficient IT are presumed constant. 

2 FLM 219 
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For rigid rotation, Euler's equation normal to a streamline gives the pressure in the 
liquid at  the free surface as 

p,(r*) -po = i@?2r*2 - PgY * 1 (4) 

where p ,  is a constant reference pressure. Inserting (2) and (3) into (4) and non- 
dimensionalizing r*, y* and c* with the channel width W = R,-R, furnishes thc 
boundary-value problem describing the liquid surface profile 

3 = c o t e l  a t  r = r  =-, Rl 
dr  l - W  

in which an arbitrary constant representing a uniform vertical displacement has been 
omitted. Bo = p g W / q  is the Bond number measuring the relative importance of 
gravitational to  surface tension forces and We = pPR: W / c  is a rotational Weber 
number measuring the relative importance of centripetal to surface tension forces. 
Zero-Wcber-number profiles are described by Padday & Pitt (1973) as gravitationally 
distorted nodoids or unduloids. Following their classification scheme, profiles a t  non- 
zero Bond and Weber numbers for the annular menisci considered here fall into the 
category of radius-fixed (pinned) nodoids distorted by both gravitational and 
centripetal acceleration fields. Solutions for the meniscus profiles are governed by 
five independent parameters: Bo, We, O , ,  rl and AVIV,. The normalizing factor V, = 
T C ~ B ( + W ) ~  for the overfill volume, AV) is half the volume of a torus of inner radius R, 
and outer radius R, ; thus the torus cross-section is formed by rotating a line of length 
W in the meridional plane of the liquid ring about its mean radial posit,ion R = 
+(Rl + R2), Of course, other choices for the independent non-dimensional parameters 
are possible. 

The inhomogeneous second-order equation for q(r)  in ( 5 )  is nonlinear and admits 
multiple-valued solutions (see Padday 1971 and Finn 1986 for computed examples 
a t  zero Weber number) and hence numerical integrations must be performed with 
care. In regions where Jdyldrl becomes large i t  is convenient to  interchange the role 
of dependent and independent variables. Using the relations 

1 d2r dr  
dq dyldr '  dy2 

- _ -  

equation (5) may be rewritten as 

We have chosen to numerically integrate (5) for y = y(r) in regions where (dyldrl d 
1 and switch to integrate (7) for r = r(y) in regions where (drldql 6 1 .  Different 
parametric forms of the equations have been considered (cf. Princen & Mason 1965; 
Concus 1968; Huh & Scriven 1969; Padday 1971) to avoid singular behaviour a t  
critical points, but our scheme works quite satisfactorily. A standard shooting 
technique was employed using a variable-order Adams predictor-corrector IMSL 
algorithm. For fixed values of Bo, We, 8, and rl, y = yl is specified at r = r ,  and 
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Track 

1 
2 
3 
4 
5 
6 
7 

TABLE 1. 

R ,  (cm) 

0.857 
2.073 
3.658 
6.344 
8.916 

11.429 
13.982 

w (cm) 

0.372 
0.383 
0.373 
0.388 
0.382 
0.366 
0.384 

D (cm) 
0.2473 
0.2493 
0.2464 
0.2496 
0.2454 
0.2486 
0.2543 

T ( O F )  H (Yo) Bo 

68 87 1,860 
69 81 1.967 
69 85 1.875 
68 85 2.026 
68 92 1.965 
68 92 1.798 
67 88 1.984 

r1 

2.304 
5.418 
9.795 

16.339 
23.317 
31.272 
36.393 

Annular groove dimensions for the seven tracks and average experimental conditions 
for measurements conducted in each track 

0.4 

R r )  

0.2 

t 
I I I I I I I 1 

0 0.2 0.4 0.6 0.8 1 .o 
r - r ,  

FIGURE 2. A family of capillary surface profiles computed a t  Bo = 0.01967 for Track 2 having 
inner contact angle 8, = 120". 

integration is carried out to r = r2 where qz and 8, are evaluated ; if ql + q2 iteration 
on ql proceeds until q1 = 7, = yo. The overfill volume under the curve [ ( r )  is also 
calculated for comparison with experiment. If in addition AV is specified, an outer 
loop iterating on 8, is required. A routine for backwards integration was also 
developed so that O2 could be specified in lieu of 13,. 

Experiments to be presented in $4 were conducted in seven concentric grooves of 
nearly equal width and depth machined in a flat aluminium plate. We henceforth 
refer to these grooves as Tracks 1-7 and note that their mean radii increase with 
increasing track number. Measured channel dimensions are given in table 1 along 
with other pertinent experimental data. We present sample calculations of capillary 
surface profiles in steady rotation a t  Bo = 0.0197 corresponding to axisymmetric 
menisci formed in Track 2 with distilled water in a gravitational field 1/100th that 
of Earth's gravity. Figure 2 shows a family of free-surface profiles all with inner 
contact angle 8, = 120'. Each curve corresponds to a unique combination of 52 and 
AV. Since the radial and vertical coordinates are both normalized with Wand plotted 
on uniform scales, the figure exhibits proportionately correct free-surface profiles. 
Note that the overfill volume increases with increasing D and multiple-valued 
profiles at the outer rim are observed for 52 > 32 rad/s, approximately. As described 
in $3, most stability measurements were conducted by metering a prescribed overfill 
volume A V  of water into a groove and then increasing 52 until contact line movement 

2-2 
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FIQURE 3. Three families of capillary profiles computed a t  Bo = 0.01875 for Track 3 at different 
overfill volumes: ( a )  AV = 0 cm3; ( b )  AV = 0.010 cm3; (c) At' = 0.035 cm3. The thick line profiles 
correspond zero plate rotation. 

was observed. Capillary surfaces corresponding to this type of experiment at Bo = 
0.0188 in Track 3 are presented in figure 3 for three overfill volumes : (a) zero overfill 
volume corresponding to a flat surface a t  zero rotation, (b)  a shallow overfill 
volume AV = 0.10 ml, and ( c )  a large overfill volume AV = 0.35 ml. In  each figure the 
profile at zero rotation is marked by a thick line and the evolution of profiles with 
increasing angular speed is indicated by the direction of the arrows. Note that each 
set of profiles exhibits a mutual point of intersection that progressively shifts 
towards the outer rim as the overfill volume increases. Similar profile intersection 
behaviour for non-rotating menisci in a vertical right circular cylinder may be seen 
in the calculations presented by Concus (1968). Conditions for movement of a contact 
line for capillary profiles like those presented in figures 2 and 3 are established in the 
following section. 
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2.1. Condition for incipient contact line movement 
Coghill & Anderson (1923) have performed definitive experiments demonstrating 
that the static contact angle a of a liquid pinned to a corner with included angle /3 
is free to pivot through the angular range 

aR < a  < (7c-/3)+aA (8) 

relative to one of the two intersecting planes forming the corner. For /3 = 7c when the 
corner degenerates to a flat surface, one recovers the usual relation for contact angle 
hysteresis where the contact line remains stationary for values of a between the 
receding contact angle aR and the advancing contact angle aA. The contact angle 
hysteresis (aA-oIR) in certain liquid-solid systems can be quite large. For example, 
Dettre & Johnson (1965) report contact angle hysteresis of nearly 90" for water on 
titanium-coated glass after treatment with a sodium stearate solution and a number 
of coating treatments with polydibutyl titanate. In  the present experiments /3 = in. 
Thus, according to (8) contact angle variability a t  the inner and outer corners of each 
groove is increased by ire over and above the natural contact angle hysteresis of the 
system. In terms of 8 defined relative to the vertical channel walls (cf. figure 1) the 
static contact angles may assume any value in the range 

aR < < i7c+aA. (9) 

Equation (9) represents the necessary and sufficient conditions for the existence of a 
static contact line a t  a corner of included angle in,  and hence the corresponding 
profiles for pinned static menisci are represented by solutions of (5) satisfying (9). 

We now investigate different possibilities for contact line movement according to 
(9). Consider first the case of a stationary plate for which SZ = 0. Numerical solutions 
show that, owing to the compound curvature of the system, O1 > 8, for all positive 
overfill volumes. Thus, as the liquid volume supported by the channel increases, an 
overfill volume (AV), is reached for which 8, = (8,)* = and the contact line 
can no longer remain at  the inner rim. In this case the fluid initially must move 
radially inward across the interior horizontal surface in the direction of the arrow in 
figure 4(a). Contact line movement by this mechanism is expected to occur a t  high 
overfill volume and low angular speed. 

Now consider what happens when the plate begins to rotate. As shown in figure 3, 
the centre of gravity of the overfill volume gradually shifts towards the outer rim and 
a speed is reached beyond which 0, > 8,. As SZ increases, the contact angle a t  the 
outer rim will ultimately attain the value 0, = (82)A = i7c+aA whence the contact 
line can no longer be maintained there. In  this case the liquid initially must move 
radially outward across the exterior horizontal surface in the direction of the arrow 
in figure 4 ( b ) .  For example, consider water a t  0.01 times Earth's gravity filling Track 
2 with an advancing contact angle aA = 84". Figure 5 displays a family of free-surface 
profiles spanning that channel for 8, = (82)A = 174' corresponding to the condition 
for incipient contact line movement at the outer rim. Not shown are profiles for 
Q < 10 rad/s for which 8, > 8,. Above this critical frequency 8, > el, and the contact 
line a t  the outer rim is prone to move a t  sufficiently high rotational speed. Note that, 
in contrast to the results presented in figure 2, the overfill volume decreases with 
increasing Q. This is in accordance with intuition since small overfill volumes are 
substantially more difficult to centrifuge out of the rotating groove than large 
volumes. (We differentiate between and (8z)A since if the inner and outer corners 
of a groove were constructed using different materials, the advancing contact angles 
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High speed 

I (b) High overfill 

r 

i (d 

FIQURE 4. Diagram showing the three limiting contact angles which give rise t o  contact line 
movement in the direction indicated by the arrows. The criteria are: (a) 0, 3 with incipient 
motion to  the left; (6) I), 3 (0,)* with incipient motion t o  the right; and ( c )  8, 6 with incipient 
motion down the inner wall. 

Low overfill High speed 

a t  each corner would be independent parameters of the system.) Contact line 
movement by this mechanism is expected to occur at moderate-to-high overfill 
volume and moderate-to-high angular speed. 

Another possibility exists for ( 5 )  and (9) not to be satisfied. Referring to figure 1, 
the fluid always advances clockwise around the outer corner, either by an increase in 
overfill volume or an increase in plate angular speed. The fluid may either advance 
counterclockwise around the inner corner if liquid is added to the groove, or recede 
clockwise around i t  if the rotation frequency increases. It is this latter condition 
that gives rise to a third mechanism for contact line movement. Suppose in the 
example of figure 5 that ax = 60". Then for rotation rates greater than 45 rad/s, 
approximately, the condition O1 = (Ol)R = aR is reached before 0, = (O2)* = 174" 
indicating that the contact line a t  the inner rim must move. In this case the fluid 
initially must recede down the inner vertical wall in the direction of the arrow in 
figure 4(c) .  This mechanism for incipient contact line motion is expected to be 
relevant at low overfill volume and high angular speed. 

We are now in a position to construct a composite regime diagram for incipient 
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FIGURE 5 .  A family of free-surface profiles computed a t  Bo = 0.01967 for Track 2 having outer 
contact angle 8, = 174'. 
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FIGURE 6. Composite stability boundary a t  Bo = 0.01967 for Track 2. The curves marked (81)R and 
(0JA correspond to stability branches computed for (QR = 45' and = 165O, respectively. 

contact line movement based on the three mechanisms described above. To fix ideas, 
we take Bo = 0.0197, rl  = 2.073, aR = 45" and aA = 75". We define 51, as the critical 
angular rotation rate for which either contact line becomes dislodged from its rim at  
overfill volume AV. The boundaries for the critical static configuration in (Q,, AV)- 
space are presented in figure 6. At small rotation rates, the domain is bounded by the 
curve labelled (el)* and movement first occurs as an inward displacement of the inner 
contact circle when 61 = ( ~ 9 ~ ) ~  = 165". At small overfill volumes, the domain is 
bounded by the curve labelled (6,)R and motion first occurs as a downward 
displacement of the inner contact circle when 8, = (6JR = 45". These two boundaries 
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are intersected by the curve labelled (02)A and here movement first occurs as an 
outward displacement of the contact circle a t  the outer rim when 0, = (02)* = 165". 

Several aspects of the regime diagram in figure 6 may now be interpreted with 
regard to a physical experiment. Perhaps the most interesting feature is the existence 
of a small domain corresponding to overfill volumes (AV), < AV < (AV), which can 
be accessed only by adding liquid to  the groove while it is rotating. The maximum 
overfill volume (AV), is that  corresponding to  the solution for which (Ol)A = (02)A. 
The rotation speed a t  this point of maximum overfill volume is denoted QrnOv. For 
0 < (AV) < (AV), the experiment may be carried out by the simple expedient of 
filling the groove of a stationary disk and then increasing the angular speed until 
contact line movement is first observed. At low overfill volumes there exists a 
maximum rate of angular rotation 8, defined by the solution for which (Ol)R = (02)A. 
Finally, one may observe that both the and (02)A boundaries perpendicularly 
intersect the A V-axis, a condition which might have been anticipated considering the 
invariance of equation ( 5 )  with respect to the sign of 52. An experiment designed to 
test the above mechanisms for incipient contact line movement is described in the 
following section. 

3. The experiment 
3.1. Apparatus 

A rotating table was constructed to investigate the stability of pinned axisymmetric 
menisci rotating a t  constant angular velocity. The stationary frame consisted of two 
thick horizontal aluminium plates bolted together with machined spacer tubes and 
was supported underneath by three adjustable, shock-mounted aluminium legs 
attached to a concrete floor. The spindle assembly, housing two thrust bearings and 
the rotating shaft, was mounted vertically through the vertically separated 
horizontal plates. A cylindrical flange mounted a t  the top end of the rotating shaft 
contained a bolt circle for attaching the circular test plate. The rotating shaft was 
driven by a 2 HP stepper motor via a belt-and-pulley system. Included in the drive 
chain was a large (Volkswagen) flywheel to minimize sudden changes in angular 
acceleration. The system was equipped with a light beam encoder interrupted by 150 
equally spaced holes located around a circle on a thin disk concentric to and rotating 
with the drive shaft. The average period measured by a timer-counter for the passage 
of 10 or 100 holes past the encoder was used to determine the angular velocity of the 
plate. The stepper motor was controlled by a Superior Electric indexer providing two 
continuously adjustable speed ranges. Accessible disk speeds fell in the range 3 < 
52 < 100 rad/s, the lower limit set by cogging of the stepper motor under the high 
inertia of the system. 

The test plate with seven concentric grooves of nearly equal rectangular section 
was machined from 6061-T6 aluminium stock with final groove dimensions as listed 
in table 1. The grooves had an average width = 0.378 cm, but width variations of 
as much as 5% existed from track to track. The top corners of each groove were 
rounded to a radius of 0.15 mm, approximately. After machining, the plate was hard 
anodized and all surfaces except the bottom of each groove were polished smooth to 
a roughness of 0.5 pm. Since the interesting aspects of this experiment are contact- 
angle dependent, the plate was not pretreated with a hydrophilic polymer solution. 
With the disk bolted in place the runout at its outer edge measured k0.02 mm, 
showing excellent concentricity with the drive shaft. Levelling the support frame 
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gave a maximum inclination of 0.12” for the test plate throughout a complete 
rotation as measured by a calibrated level spirit. 

Loss of water from a groove, due in part to evaporation in the dry climate of 
Colorado where the experiments were performed and in part to forced convection set 
up by the relative motion between air and the rotating liquid surface, was a particular 
concern. Forced convection evaporation was minimized by placing a transparent 
Plexiglas cover over the test plate after filling a groove with liquid. The cover fitted 
snugly around the outer rim thereby sealing air in the 15 mm gap above the surface 
of the plate. Natural evaporation was retarded by performing the experiments a t  
elevated humidity in a control chamber. As shown in table 1 all experiments were 
conducted a t  relative humidities in the range 81-92% and at temperatures near 
68 O F .  A description of the control chamber is given in the Appendix along with 
measurements of the evaporation rate of water under experimental conditions and 
an analysis of errors. We find that errors due to water evaporation, accuracy in 
reading pipette volumes and accuracy in measuring angular velocities all fall within 
the diameter of a plotting symbol for measurements presented in figures 7 and 8. The 
error bars for these data measure the repeatability of critical frequency or overfill 
volume a t  which first contact line movement was observed by the naked eye for 
experiments performed under nearly identical ambient conditions. 

In spite of the fact that  the stepper motor was shock-mounted to the concrete floor 
and separated from the rotating table, very weak high-frequency vibrations 
transmitted through the floor and/or the belt-and-pulley system to the support 
platform could be discerned. Although it  can be expected that above a certain 
threshold external vibrations will cause premature instability, the quantitative effect 
of the table’s acceleration noise on the stability measurements is difficult to assess. 
The r.m.s. amplitude variation of this ‘g-jitter’ as a function of disk frequency was 
measured and is presented in the Appendix. The maximum r.m.s. g-jitter recorded 
was less than 0.2% of Earth’s gravity. 

3.2. Measurement procedure 
The experimental procedure for determining the critical frequency 51, of contact line 
movement a t  fixed overfill volume is described below. Ambient conditions in the test 
chamber were set near 68 O F  in the neighbourhood of 85-90 YO relative humidity. The 
test fluid employed in all experiments was high-performance liquid chromatography 
(HPLC) grade water. Before an experiment the test groove was cleaned with ethyl 
alcohol and rinsed two or three times with HPLC grade water. Water from the last 
rinse was absorbed with lint-free tissue and final drying took place via natural 
evaporation. A 5 ml pipette readable to f0.005 ml was used to meter water into 
Tracks 1-3 and a 10 ml pipette accurate to f0.025 ml (or a combination of these 
pipettes) was used for Tracks 4-7. Prior to each experiment the groove was inspected 
to ensure that the water made smooth contact around both rims of the channel, a 
procedure particularly important at low overfill volumes to ascertain that the liquid 
was uniformly pinned to the inner and outer corners of a groove. Then the Plexiglas 
cover was mounted and plate rotation initiated. Having located the approximate 
angular speed for instability in an earlier run, the disk was brought rapidly up to a 
rotation rate slightly below the expected critical speed. An estimate for the fluid 
spin-up time is given by the time r = (;W)”/v for viscous diffusion from the vertical 
sidewalls. This estimate is considered conservative because it does not include 
viscous diffusion from the larger bottom surface and excludes any minor contribution 
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from Ekman pumping. Using v = 0.01 cmz/s for water at room temperature gives 
T x 3.6 s. Based on this estimate the slightly subcritical rotation speed was 
maintained for a period of approximately 30 s to establish nearly rigid rotation of the 
liquid in the groove. Subsequently, the speed was gradually increased until contact 
line movement was observed a t  which time a trigger signal was sent to the timer- 
counter to freeze the digital LED display of measured period. Proper illumination of 
the rotating rivulet through the Plexiglas cover was imperative to minimize 
reflection and clearly detect first contact line movement. Unfortunately, the corner 
of the Plexiglas cover interfered with the illumination on the outermost groove and 
reliable stability measurements for Track 7 could not be made. 

The maximum overfill volume that can be supported by a non-rotating groove as 
noted in figure 6 is (AV),. The determination of this volume for each channel was 
made by continuously metering liquid into a stationary groove until contact line 
movement was observed. These experiments were sensitive to pipette stream 
disturbances near the onset of instability and to the precision with which the plate 
was levelled, particularly for the outer grooves. To rectify the latter problem, the test 
plate was removed from the rotating table, placed on an aluminium platform and 
levelled to _f0.02" with the aid of three fine levelling screws. Concerning the former 
problem, disturbances produced by water emanating from the pipette were least 
when the pipette formed a fine narrow stream. At low head large drops formed a t  the 
tip of the pipette ; since these drops caused a significant ripple while penetrating the 
liquid surface, this condition was always avoided. At sufficiently low rotation speeds 
critical overfill volumes fall in the range (AV), < (AV) < (AV)m. At least one data 
point in this region of the regime diagram for each of the six inner tracks was 
obtained by continuously overfilling a test groove on the disk rotating a t  constant 
D until contact line movement was observed. 

Measurement of the surface tension coefficient and the apparent (macroscopic) 
advancing and receding contact angles were made in the test chamber under the 
average conditions of the experiments, namely a t  68 "F and 87 % relative humidity. 
For a discussion of actual versus apparent contact angles, the reader is referred to the 
review article by Dussan V. (1979). The surface tension coefficient measured with a 
Du Nouy tensiometer was u = 72.8 dynes/cm. The limiting contact angles were 
determined by observing the angles a t  which the contact circle of a spherical liquid 
drop formed on the surface of the disk would advance or recede. The experiment was 
carried out by slowly injecting (for measurement of aA) or withdrawing (for 
measurement of aR) HPLC grade water through a small hole drilled normal to the 
polished aluminium oxide surface midway between Tracks 6 and 7 with the plate 
levelled to +0.02" by the stationary levelling platform. Direct observations of the 
advancing and receding contact angles were made with a goniometer focused tangent 
to the contact circle while sighting a t  a slight angle ( x  2") down from horizontal. The 
goniometer was fabricated in-house by mounting a small microscope with cross-hairs 
onto the rotational axis of a Melles-Griot goniometer base rotatable through )45" 
with a vernier scale accurate to 5' angular displacement. Repeated measurements 
gave uA = 86.5f 1.5" and aR = 16f2.0". Using a Par Mettler densitometer, the 
density of HPLC grade water was determined to be p = 0.998 g/cm3 and the 
gravitational constant a t  the site of the experiments was g = 979.6 cm/s2. This gives 
an average Bond number for the experiments of Bo = 1.924 with + 6 %  variations 
due to individual differences in the width of each track. 

Two comments of particular importance for experiments of the present type are 
now given. First, application of the sensitive 'shaking test '  (Scott 1979) for surface 
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FIGURE 7 .  Measured maximum overfill volumes a t  zero rotation as a function of groove curvature. 
The continuous curve is composed of points computed for the experimental Bond numbers listed 
in table 1 for each track and additional points computed for the average Bond number Bo = 1.924 
a t  other r1 values. Error bars indicate measurement repeatability. 

contamination showed that all bubbles burst upon reaching the free surface in less 
than 0.5 s for HPLC grade water from a newly opened bottle, but this increased to 
approximately 1 s with continued use from the same bottle. Kitchener (1964) notes 
that persistence of bubbles a t  a water surface for longer than 1 s is indicative of the 
presence of surface-active impurities. Scott (1981) found, in a double distillation 
process to prepare surface-clean water for sensitive experiments on capillary-gravity 
waves, that all surface bubbles ruptured in less than 0.5s. By comparison, we 
accepted bottled HPLC water as being sufficiently surface-clean for these preliminary 
experiments. Second, in spite of a concerted effort to produce a test plate with 
smooth clean surfaces and uniformly rounded corners, close inspection revealed that 
the contact lines were not in perfect circular contact around the corners of the 
grooves. Rather, when viewed under a microscope with 2 0 x  magnification, the 
liquid in the immediate vicinity of the contact line appeared minutely wrinkled 
around its entire circumference, with the irregular fluid surface smoothing out 
rapidly away from the irregular line of contact. This feature was observed only on a 
microscopic scale, however, and to the naked eye the pinned menisci in each groove 
appeared truly axisymmetric. 

4. Experimental results 
Experiments to determine incipient contact line movement a t  nearly constant 

Bond number (cf. table 1) were made over the following range of non-dimensional 
parameters: 2.30 < rl < 36.4; 0 < We < 19.2; 0 < AV/V, < 0.87. Measurements of 
(AQ,/VT for the seven tracks are presented in figure 7. The solid line is based on the 
measured advancing contact angle = 176.5' and was computed for the values 
of Bo and rl listed in table 1 with additional points at other values of rI computed 
at Bo = 1.924, the average Bond number for the experiments. The slight waviness in 
the computed curve is a manifestation of the & 6 %  Bond-number variation. Unity 
ordinate in this figure corresponds to  the normalized overfill volume a t  zero Bond 
number with contact angles = 180' in the asymptotic limit rl + 00 corresponding 
to  straight (two-dimensional) menisci. In  the present computations the asymptotic 
value for the normalized overfill volume ( z 0.83) is less than unity, owing to the fact 
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FIGURE 8. Stability measurements for rotating rivulets showing the critical angular speed a, as a 
function of overfill volume A V  for: (a) Track 1; ( b )  Track 2 ;  (c) Track 3;  ( d )  Track 4; ( e )  Track 5 ;  
and ( f )  Track 6. Open symbols correspond to experiments performed a t  constant overfill volume 
and closed symbols correspond to experiments performed at  constant angular velocity. Error bars 
indicate measurement repeatability. The curves labelled (OJR and (el, J, are the solution branches 
computed at the experimental conditions listed in table 1 for the measured contact angles = 
16" and (01,2)A = 176.5", respectively. 
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that  the contact angles were less than 180" and also because the Bond number was 
not sufficiently small for gravitational effects to be neglected. The r.m.s. error 
between experiment and theory for the data in figure 7 is 3.8%. 

Experimental data for contact line movement of rotating menisci formed in the 
first six tracks are presented in figure 8. These results are given in dimensional (SZ,, 
AV)-space to facilitate reference to corner points defined on the regime diagram in 
figure 6, and also to  emphasize the wide range of disk angular frequency and overfill 
volume covered by the experiments. Open symbols represent experiments conducted 
at  a preset overfill volume and solid symbols represent those conducted at  a preset 
disk rotation rate. The region contained inside the continuous solid boundary 
represents the domain for which the contact lines are stationary in the rotating frame 
computed for the conditions of the experiments. Measurements bear out the general 
trends of the numerically computed boundary for the critical static configuration. 
For example, data along the primary branch (02)* show that the critical angular 
rotation rate decreases with increasing overfill volume. Also, values of Qc near zero 
overfill volume do not continue to rise following the (02)A branch, but remain within 
the stable bound of the boundary. Furthermore, the existence of a range of 
overfill volumes (AT'), < AV < (AT'), accessible only by adding liquid to  a rotating 
disk is verified. On the one hand, stability measurements performed a t  fixed overfill 
volume set slightly below (AT'), all fall near the upper (02)* branch. Experiments 
conducted a t  fixed R near the (el)* branch in figure 8(a-c), on the other hand, always 
gave critical overfill volumes larger than (AV)o. The fact that  overfill volumes 
measured near Q,,, were larger than the numerically determined values of (AV), for 
each groove can be explained as follows. At the computed corner point [Q,,, (AT'),] 
the meniscus did not experience contact line movement. Increasing A V  to a value 
slightly greater than (AV), resulted in a very small displacement in either the inner 
or outer contact line. In  the four or five repeat experiments for Tracks 1-3 performed 
very near the critical point, overfill volumes larger than (AV), were always recorded, 
probably owing to  difficulty in detecting the first subtle movement of a contact line. 

There is an unmistakable trend in the experimental data along branches (Ol)R and 
(Oz)A that is not consistent with the numerically computed regime boundaries. At 
high rotation rates the measured values of Q, always fall below the numerical curves 
while a t  low rotation rates the data sometimes lie above the (02)* branch. The 
observation of premature instability a t  elevated rotation rates is most, likely due to 
the weak high-frequency vibrations of the experimental platform induced by the 
stepper motor and drive system. Notice in figure 8 that  the discrepancy between 
experiment and computation near SZ, increases uniformly (within experimental 
error) with Q,, i.e. the 3 rad/s discrepancy a t  Q, x 25 rad/s in figure 8 (f) rises to 
about 10 rad/s at  Q, = 83 rad/s in figure 8 (a ) .  Ignoring the two small resonances a t  
20 and 40 rad/s, the r.m.s. acceleration disturbance field measured in figure 15 in the 
Appendix increases in like manner from about 0.0008g to  nearly 0.0029 over the 
corresponding range of Q,, supporting the contention that the observation of 
premature instability is due to this external disturbance. In  figures 8 ( b ,  c) and 
8 ( e ,  f) the measured data along the lower portion of the numerically computed (02)* 
branch fall slightly above that boundary in the unstable region. As pointed out by 
two referees of this paper, one should expect that  the limiting contact angles of water 
on the anodized surface will vary to some extent across the plate. Thus the 
measurements of aA and aR a t  the single location between Tracks 6 and 7 may not 
be indicative of the local advancing and receding contact angles a t  the rim of each 
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groove. A variation of the average limiting contact angles from rim to rim could 
account, at least in part, for the fact that  the experiments and theory do not agree 
to within experimental error. 

Apart from the generally favourable agreement between experiment and 
computation, observations of the instability process were consistent with the 
proposed mechanisms for contact line movement. Instabilities at zero rotation on the 
(Ol)A branch appeared as a radially inward displacement of the inner contact line 
with the outer contact circle still pinned, as did the instability observed at Q, x 
8 rad/s along that branch in figure 8(a ) .  Near 9,,, contact line motion across either 
the inner or outer rim was observed. However, owing to weak asymmetries in the 
experimental set-up and especially in the method of adding liquid to  the groove for 
experiments conducted a t  fixed angular speed, these instabilities never occurred in 
an axisymmetric fashion. The menisci remained pinned over most of a groove's 
circumference with only a local displacement of fluid across a corner, typically 
encompassing 5' arclength for Track 7 and increasing to 30" arclength for Track 1. 
Thus the first contact line movement evidently occurs a t  the weakest point of 
contact around the rim. Contact line movement a t  high rotational frequencies near 
the (ellR and (62)A branches always produced a spontaneous outward radial spray of 
liquid from the grooves. These apparently correspond to a real hydrodynamic 
instability and can be unambiguously classified as 'explosive ', the process being 
more violent a t  higher critical rotation speeds, larger mean radii and lower overfill 
volumes. It might be anticipated that contact line movement near the ( 1 9 ~ ) ~  branch 
would not be explosive, but rather one whose postcritical state consists of steady 
rotation a t  a slightly supercritical speed with only a small displacement of the 
contact circle down the inner wall. This was not observed, however, apparently 
because the downward motion of the inner contact line sends a radially propagating 
disturbance across the meniscus which, upon reaching the opposite rim, momentarily 
increases the outer contact angle above thus inducing contact line movement 
there as well. 

5. Numerical parameter studies 
In the experiment contact line movement for annular axisymmetric rotating 

menisci is governed by six independent dimensionless variables, Bo, We, AV/VT, O,, 
OR and rl for circular grooves of rectangular section with included angles p = $ 7 ~  at 
each corner. (For axisymmetric grooves of varying geometrical section with corners 
constructed of different solid materials, contact line movement would be governed by 
a total of nine parameters with 0, replaced by (O1)* and (a2), and the two remaining 
parameters being p1 and p2, the included angles a t  the inner and outer corners, 
respectively.) Therefore, the regime diagram in non-dimensional (Wet, AV/ VT)-space 
depends on the four remaining parameters, Bo, O,, OR and rl. (The square-root of the 
rotational Weber number is best-suited for displaying the (Ol)A and (B1)R boundaries.) 
Since the Bond number was nearly constant for the computations presented in 
dimensional form in figure 8, only the parameter rl was varied substantially. When 
these results are plotted as Wet versus AV/VT, it is found that the (el)* branch is 
relatively insensitive to variations in rl for the conditions of the experiments. The 
(e2)* and branches, on the other hand, are strongly affected as is evident in 
figure 8 by the substantial rise in Q, with decreasing values of rl ; non-dimensionally, 
the maximum Weber number rises from W e i  x 5 a t  rl = 36.4 to  W e i  x 19 a t  rl = 
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FIGURE 9. Free-surface profiles along the (OJA = 176.5' stability branch connecting (AV), at zero 
angular velocity to (AV), at Om,, = 148.54 rad/s computed at the average experimental values 
Bo = 1.924 and = 0.378. 

2.3. Thus, in the range of r1 values explored, decreasing r1 a t  fixed width W enhances 
the stability of pinned rotating menisci prirharily through a stabilization of the (t92)A 
and (81)n domain boundaries. 

We conclude this investigation by presenting three additional parameter studies. 
In the first study the region of 'inaccessible ' overfill volumes governed by the (8JA 
domain boundary is considered in detail over a wide range of r,. The second study 
elucidates the effect of Bond number on the stability diagram and the final study 
exhibits the influence of contact angle hysteresis. 

5.1. Maximum overfill volume 
Examination of the results in figure 8 shows that (AV)J(AV), increases with 
decreasing values of r1 and the range of inaccessible static states for experiments 
conducted at preset overfill volumes can be significant. Consider, for example, the 
family of (8& profiles in figure 9 computed a t  the average Bond number for the 
laboratory experiments, but with inner radius R, = 0.01 cm. Integration gives 
(AV), = 0.00791 em3 and (AV), = 0.0299 em3 a t  am,, = 148.5 rad/s. Thus nearly 
75% of the overfill volumes can only be accessed by adding liquid to the rotating 
groove for this small parameter value, rl = 0.0265. 

Numerical computations a t  the average conditions of the experiments, Bo = 1.924 
and F = 0.378 cm, have been conducted to investigate the dependence of (AV),, 
(AV), and SZ,,, on T,. The results of this parameter study are presented in log-log 
form in figure 10. For rl % 1 numerical results yield the following approximate 
asymptotic behaviours : 

(AV)m - 17.5r1 (em3), ) 

The limiting forms in ( l o b )  and (lOc) for rl + 00 are consistent with the two- 
dimensional configuration to which they correspond, namely (AV), is the maximum 
overfill volume which must occur at zero angular velocity. The fact that both (AV), 
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FIGURE 10. Variations of the maximum overfill volume (AV),,,, its ratio to (AV), and its 
corresponding angular speed amov as a function of vl computed at the average experimental values 
Bo = 1.924 and w = 0.378. 
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FIGURE 11. Locus of points defining the coordinates of the maximum overfill volume in the 
(Qc, AV) stability plane computed at the average experimental values Bo = 1.924 and W = 0.378. 

and (AV), increase linearly with rl is just a reflection of the fact that  the area under 
a meridional section has settled down to a constant value and the overfill volume 
then increases linearly with mean groove radius. For rl 4 1 the approximate 
asymptotic trends are 

(AV), - 0.0229 (ern3), (1la) 

(AV), 0.076 
(AV), ry.82 * 
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FIGURE 12. Bond-number variation of the composite stability boundary for Track 2 computed 

for (O1)= = 30" and (Ol,2)A = 165'. 

By virtue of (1  1 a )  it  is clear that the singularity in (1  1 c) is due to (AV), tending to 
zero algebraically as r1 + 0. No significance is given to the exponent in (1 1 c )  as it is 
likely to be Bond-number dependent. Plotted meniscus profiles for zero rotation in 
this limit look very much like scaled-down versions of the 52 = 0 profile in figure 9, 
i.e. a slow rise in fluid elevation away from the outer rim that peaks near ( r - r l )  = 
0.25 and a more rapid descent to  zero amplitude at the inner wall where (6,) = 
(0JA = 176.5'. No tendency towards signularity in profile curvature for rl -to was 
observed in the numerical solutions. The locus of corner points (Q,,,, (AT'),) defining 
the position of the maximum volume in the regime diagram is plotted in figure 11.  
Note from (10a) and (10 b)  that  as Q,,, increases from zero, the corner points follow 
the asymptotic trajectory 

pass through a short transition, and ultimately terminate at the accumulation point 
(0.0229 cm3, 158 rad/s). Consideration of the foregoing results suggests that  the 
inequalities 0 < Q,,, < 8, and 0 < (AV), < (AV), hold for all rl throughout its 
semi-infinite range [0, a], and it  is probable that this result holds true for other Bond 
numbers as well. It should be noted, however, that the limit rl + 0 would not be 
physically possible for systems with advancing contact angles aA > in for which 

> 7c. In  this case the overhanging free-surface profiles a t  low values of Q would 
touch along the axis of symmetry and merge to form a circular liquid pool of radius 
R, before the limit R,  = 0 is reached. 

5.2. Bond number and contact angle hysteresis 
Figure 12 exhibits non-dimensional regime diagrams for Track 2 covering four 
decades of Bond number computed for (6)l,2)A = 165' and (B)= = 30". Since there is 
no perceptible change in plotted results for Bo < 0.01, the curve computed for Bo = 
0.001 may be regarded as the limiting critical zero-Bond-number boundary. Above 
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FIGURE 13. Variation of the composite stability boundary computed at Bo = 1.967 for Track 2 
as a function of the advancing and receding contact angles. 

Bo = 0.1 noticeable changes take place and contact line movement is suppressed near 
the lower corner at  the maximum overfill volume and enhanced near the upper 
corner at  the maximum Weber number. In terms of the channel dimensions given in 
table 1, the domain boundaries in figure 12 correspond to experiments performed 
with water in gravitational fields in the range 0-59. 

The effects of contact angle hysteresis on contact line movement for menisci 
formed in Track 2 at Bo = 1.967 are displayed in figure 13. The advancing and 
receding contact angles vary over the ranges 30" < aR < 60" and 60" < aA < 90" 
corresponding to 30" < ( 1 9 ~ ) ~  < 60" and 150' < (8,,,)A < 180', respectively. These 
values have been selected so that in all cases (aA-aR) 2 0 and hence all nine 
combinations of the stability branches constitute physically realizable critical static 
configurations. The innermost boundary marked by the thick line corresponds to 
zero contact angle hysteresis and encompasses the smallest domain of static states, 
The finite domain of stable states in this case is due solely to the presence of the 
corners which allow contact angle movement through the angular range (IT -p)  = ;IT 
according to equation (8). As (/3& decreases or (O1,JA increases, the domain of stable 
states increases owing to the corresponding increase in effective contact angle 
hysteresis. Figure 13 shows that the domain of critical static states is more sensitive 
to variations in advancing contact angle than receding contact angle. 

6. Discussion and conclusion 
A numerical study of the shape of pinned annular capillary surfaces overfilling 

circular grooves of rectangular section formed in a horizontal flat disk undergoing 
rigid rotation has been presented. Regime diagrams for the existence of static contact 
lines are determined based on the intrinsic contact angle hysteresis of the system and 
the contact angle hysteresis induced when liquid is pinned to  the corner of a solid 
boundary. Both qualitative observation and direct measurement suggest that for 
contact angles a < 86.5", contact line movement is brought about by one of three 
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mechanisms based on measured advancing and receding contact angles. A contact 
circle will move when either : (i) 8, 2 (61)A and liquid advances radially inward across 
the horizontal plate; (ii) 8* 2 (t12)* and liquid advances radially outward across the 
horizontal plate ; or (iii) 8, < and liquid recedes vertically downward along the 
inner wall. The directions of incipient contact line movement brought about by these 
mechanisms are depicted schematically in figure 4. Experiments reveal that  contact 
line motion along the (0JR and (0JA domain boundaries accessed via a line of 
constant overfill volume always produce a spontaneous explosive outward radial 
spray of liquid from the grooves. Contact line movement along the (81)A branch 
accessed via a line of constant disk rotation rate, on the other hand, always occurred 
as a relatively gentle radially inward displacement of fluid across the inner rim of the 
groove of the type referred to as 'slip-stick' movement. These findings are 
interpreted as follows. An outward displacement of the contact line a t  the outer rim 
moves liquid into a. region of enhanced centripetal force field with a resulting 
acceleration of the fluid further outward. Hence this provides a mechanism for 
hydrodynamic instability of the rotating liquid ring. An inward displacement of the 
contact line a t  the inner rim, on the other hand, moves liquid into a region of lower 
centripetal force field and the fluid displacement is retarded. I n  this case there 
appears to  be no obvious mechanism for instability. 

Although the experimental data follow the trend of the critical static con- 
figurations for each groove, i t  is a bit disconcerting that they do not agree within 
experimental error. Resonances excited by the small residual motor vibrations 
conceivably could be responsible for the early onset of instability observed at high 
disk rotation rates. However, since the power spectra of the external disturbances 
were not measured and because no analytical results for standing waves on pinned 
menisci with finite overfill volume are available, a reasonable assessment of possible 
wave resonance excitation cannot be made. There is also the possibility that the 
macroscopic advancing and receding contact angles varied across the surface of the 
plate due, for example, to water absorbed by the anodized surface with time or to 
variations in surface roughness at the machined corners of each groove as evidenced 
by the microscopic wrinkling of the liquid surface around its contact circles. A partial 
check on this possibility was made by an indirect in situ measurement of the 
advancing contact angle a t  the point of incipient contact line movement in the 
outermost groove (Track 7)  which was within the focal length of our goniometer. 
With the goniometer focused on the outer edge of the meniscus on a stationary disk, 
the radially inward movement of the inner contact line was observed when the outer 
contact angle reached 8, = 176+ 1". Numerical solution for the meniscus profile a t  
this outer contact angle then gives 6, = 176.21 f 1" for $2 = 0. This agrees remarkably 
well (perhaps fortuitously) with the measured values 8, = 176.5+ 1.5' obtained from 
direct measurement of the advancing contact angle as described in $3.2. It is noted, 
however, that this does not preclude possible contact angle variability between 
grooves. Similar measurements for the six inner grooves were not made because the 
tangency points of their menisci were just out of the focal range of the goniometer. 

The limited experiments performed thus far suggest that for static contact angles 
a < in, approximately, the stability of axisymmetric menisci pinned to the corners of 
a circular channel of rectangular section in rigid rotation can be determined by 
solutions of (5) subject to  the restriction on contact angles given by (9). We venture 
to  suggest that  solution of (5) and (9) will describe stable menisci for contact angles 
in: < a < n: a t  least over some range of wavenumbers k. This is based on the 
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conjecture that the vortex lines set up in the rigidly rotating fluid will be a stabilizing 
factor. Furthermore, the addition of contact lines to a capillary system enhances 
stability. In  the absence of gravitational and centripetal potential fields, Davis 
(1980) cites the example of the static liquid cylinder originally studied by Rayleigh 
(1879). When the cylinder is free of contact lines, stability is certain for wavenumbers 
k > 1.  If a thin wire is brought into contact with the liquid cylinder along a 
generator, thereby forming a single contact line, the region of certain stability is 
increased to k > a 4 3 .  This stabilization occurs because the addition of the fixed 
contact line precludes purely axisymmetric perturbations as admissible disturbance 
modes. The annular meniscus considered here, static in its rotating frame, has two 
circular contact lines. This is one more than the closed axisymmetric sessile drop, 
itself stable (in the absence of rotation) for all contact angles a < 7c according to 
Michael & Williams (1977). The above arguments suggest that at least conditional 
stability for pinned rotating annular capillary surfaces may be expected over a range 
of contact angles wider than that explored in the present experiments. Final word, 
of course, must await a rational stability treatment which properly includes the 
combined effects of gravitational, centripetal and Coriolis forces in the dynamical 
equations of motion. 

It is noted that the meniscus shapes for the rotating system studied here are not 
similar to  capillary surfaces pinned to the corners of concentric annular grooves 
embedded in a stationary vertical cone whose central axis is aligned with gravity. 
This is because the centripetal body force acting throughout the fluid volume is non- 
uniform : it varies linearly with radius. The analogy only holds in the limit where the 
ratio of groove width to  mean groove radius tends to zero. 

An interesting feature found in this study is the existence of a region of static 
states inaccessible to experiments conducted along a line of constant overfill volume. 
The region projected above the (O1)* boundary but below the (62)A boundary defines 
this unique domain in the (Q,,AV) regime diagram, the static states of which are 
accessible only by adding liquid to  a rotating groove. The maximum overfill volume 
of the system occurs a t  the extremity of this region, a t  the intersection of the 
and (d2)* domain boundaries. Numerical studies indicate that gravitational effects 
only become important when Bo > 0.1, approximately. The numerical studies also 
show that the domain of contact line stability may be significantly enhanced either 
by decreasing the inner radius at fixed groove width or by increasing the contact 
angle hysteresis of the system. 
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Humidity (YO) 
FIGURE 14. Evaporation rate of HGLC grade water as a function of relative humidity measured 

at 68f 1 OF. 

Appendix. Sources of error 
I n  order to minimize water evaporation during an experiment, the rotating table 

was housed in a room constructed to regulate temperature and humidity. The control 
chamber was equipped with a thermostatically controlled quartz heater, an 
ultrasonic humidifier, a fan, a thermometer and a relative humidity gauge. The 
evaporation rate of HPLC grade water a t  fixed humidity was measured by 
monitoring the weight loss of a water sample in a cylindrical plastic container with 
free-surface area 18.47 cm2. At each humidity setting the weight loss a t  68 O F  over 
a period of approximately one hour was measured with a Mettler PC 180 electronic 
balance accurate to 0.001 g. The measured rates of evaporation E as a function of 
relative humidity are plotted in figure 14. The results give rates of evaporation in the 
range 16-20 g/cm2/min for the experimental conditions listed in table 1. To assess 
whether this contributed to any significant measurement error we consider how the 
experiment was conducted for two tracks, one of small and the other of large mean 
radius. The greatest weight loss in either case must occur at the largest overfill 
volume, which exposes the greatest free-surface area to the surrounding air and takes 
the longest time to fill. Figure 7 shows that the largest overfill volumes for this 
experiment are bounded by the overfill volume of a half-torus with outer diameter 
R, and inner diameter R,. Therefore, half the surface area of a torus, n2RW, will be 
employed in the following calculations since it represents an upper bound on the area 
of the evaporating capillary surface. Here R is the average radius of a track. Track 
1 was filled with a single 5 ml pipette in about one minute and three additional 
minutes were taken to cover the plate, accelerate the disk to near-critical, wait 30 s 
for the fluid to come to solid-body rotation and slowly increase the speed to the 
observed point of contact line movement. From table 1 an upper bound on the 
surface area of 3.83 em2 is calculated and, using E = 0.0002 g/cm2/min, a weight loss 
of 0.0031 g in four minutes is found. This represents a water volume of 0.0031 om3 
corresponding to roughly 5 the diameter of the plotting symbol for measurements 
presented in figure 8 ( a )  performed in Track 1. For Track 6 two  pipettes sometimes 
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FIGURE 15. Normalized r.m.s. g-jitter of the experimental platform due to residual motor 
vibrations transmitted through the belt-and-pulley system measured as a function of disk angular 
frequency. 

were used to fill the groove -the 10 ml pipette served to rapidly fill the groove 
volume V, and the 5 ml pipette was used to add the overfill volume AV. In  this case 
the experiment could take as long as six minutes and calculations then give a 
maximum water volume loss of 0.050 em3 which corresponds to roughly f the 
diameter of a plotting symbol for the measurements given in figure S ( f ) .  Thus errors 
in volume measurement due to evaporation are negligible for the time periods used 
to perform these experiments. The precision with which the pipettes could be read 
is also small relative to plotting symbol diameters and hence experiments conducted 
with a preset volume (open circles in figure 8) have no horizontal error bars. The 
vertical error bars attached to the open circles indicate the scatter in repeatability 
of the measured critical frequency for experiments conducted under nearly identical 
conditions. Similarly, for experiments performed a t  a preset rotation rate (closed 
circles in figures 7 and 8),  frequency measurement errors fall within the diameter of 
the plotting symbols and horizontal error bars here indicate the scatter in 
repeatability of critical overfill volumes a t  which contact line movement was 
observed. 

A source of experimental error whose effect on the stability measurements is 
difficult to ascertain is the g-jitter induced by vibrations of the stepper motor and 
drive system. The r.m.s. magnitude of the acceleration jitter on the frame supporting 
the rotating disk, denoted (Ag),,,, was measured with a sensitive commercial 
accelerometer having calibration constant 0.4 Vlg, where g is Earth’s gravity. Little 
difference was found between measured vertical and horizontal r.m.s. accelerations, 
indicating a rather isotropic g-jitter field. The measured values of (Ag),,,/g as a 
function of plate frequency are presented in figure 15. Two small resonant peaks at  
0 x 20 and 40 rad/s are apparent, but otherwise the induced jitter increases 
monotonically with disk frequency. Although the maximum induced r.m.s. jitter is 
only 0.2% g, its influence on the stability measurements is not easy to assess in 
the absence of a detailed study of fluid resonance in an overfilled channel with the 
liquid pinned to its corners. 
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